40 J. OPT. COMMUN. NETW./VOL. 3, NO. 1/JANUARY 2011

D. Monoyios and K. Vlachos

Multiobjective Genetic Algorithms for
Solving the Impairment-Aware
Routing and Wavelength Assignment
Problem

Demetris Monoyios and Kyriakos Vlachos

Abstract—In future transparent (all-optical) WDM net-
works, the signal quality of transmission (QoT) will degrade
due to physical layer impairments. In this paper, we propose
two genetic algorithms for solving the static impairment-
aware RWA (IA-RWA) problem by accounting for the impact
of physical impairments in the optimization process when
searching for the optimum routing path and wavelength
channel. The first algorithm indirectly considers the physi-
cal impairments through the insertion of the path length
and the number of common hops in the search process, us-
ing classical multiobjective optimization (MOO) strategies.
The second algorithm is a single-objective genetic algorithm
(GA) that uses the Q factor for the evaluation of the feasibil-
ity of the selected RWA solution. The Q factor is used in each
iteration of the algorithm in a self-learning mode in order to
evaluate the fitness of each solution to the RWA problem and
trigger the evolution of the population. Performance results
have shown that considering path length and number of
common hops for indirectly handling impairments provide
an efficient solution to the IA-RWA problem.

Index Terms—RWA; Genetic algorithm;
networks; Multiobjective optimization.

All-optical

I. INTRODUCTION

I ntroducing optical transparency in the optical layer on
one hand leads to a dynamic, flexible optical layer with
the possibility to add extra “intelligence.” On the other
hand, transparency reduces the ability of the digital elec-
tronic layer to interact with the optical layer. Thus, optical
transparency has an impact on network design, either by
adapting the size of WDM transparent domains in order to
neglect the physical impact on the quality of transmission
(QoT) or by introducing physical considerations in the net-
work and wavelength planning process. The problem of set-
ting up lightpaths by routing and assigning a wavelength to
each connection is called the routing and wavelength assign-
ment (RWA) problem [1]. The RWA problem belongs to the
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category of NP-complete problems; that is, the computa-
tional time would increase exponentially with the problem
size. Thus, a wide range of optimization methods and heu-
ristics have been proposed to solve various optical network
optimization problems, as, for example, integer linear pro-
gramming [1]. Their high complexity, however, requires in-
tensive computational efforts, and therefore other novel
heuristic algorithms such as Tabu search [2], simulated an-
nealing [3], and genetic algorithms [4,5] have been used.

Genetic algorithms are stochastic search optimization
methods that are widely used in combinatorial optimization
and parameter tuning applications. They have been used for
solving the plain single-objective RWA problem [4], for opti-
mizing amplifier placement, and for multicasting sessions
[5]. When, however, fiber impairments are considered, most
of these studies consider the QoT problem separately from
the RWA problem [6]. If the Q factor is greater than the re-
quested quality, the connection is accepted, or otherwise it is
dropped and a new candidate path is calculated. Another ap-
proach is to incorporate impairments into the cost function
of the RWA problem. However, a cost function that considers
both linear and nonlinear impairments is still an open issue.
Therefore, other metrics have been used, including the av-
erage measured Q [7] or the noise variance [8]. In any case,
accurate Q-path estimation is a heavy computational task,
and even in the static RWA problem, with offline processing,
it requires calculations for all combinations of the k-shortest
paths for all source—destination pairs.

In this paper, we propose the use of two genetic algo-
rithms for solving the ITA-RWA problem. The first is a multi-
objective genetic algorithm (MOGA) that uses classical mul-
tiobjective optimization strategies to jointly solve the IA-
RWA problem. This algorithm decomposes the problem into
its routing (R) and wavelength assignment (WA) subprob-
lems. It then uses path length and number of common hops,
inserted as entries in a multiobjective vector, that must be
optimized jointly. This allows for the calculation of a global
optimum solution that is a set of routes that can serve the
requested connections with the minimum number of wave-
lengths and also have an acceptable QoT performance. The
second TA-RWA algorithm is a single objective, Q-learning
scheme. The algorithm calculates, during each iteration, the
Q factor of each lightpath before evolving the genetic popu-
lation to the next generation. Such an approach is computa-
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tionally hard, but is useful for both solving the offline IW-
RWA problem as well as for evaluating heuristic approaches
like the first proposed one.

The rest of the paper is organized as follows. Section II
presents the MOGA for solving the IA-RWA problem, while
Section III presents the single-objective, Q-learning genetic
algorithm. Section IV presents and compares evaluation re-
sults of both approaches. Finally, Section V concludes the

paper.

II. MULTIOBJECTIVE GENETIC ALGORITHM FOR SOLVING
THE IA-RWA PROBLEM

In this section, we adapt multiobjective optimization tech-
niques for solving the IA-RWA problem. To do so, we formu-
late the problem and introduce novel fitness functions in or-
der to indirectly account for the effect of the physical
impairments on the QoT of each lightpath.

A. Problem Definition

We are given a network represented by a connected graph
G=(N,E), where N denotes the set of nodes (not equipped
with wavelength conversion capabilities), and E denotes the
set of point-to-point single-fiber links. Each fiber link [ € E is
able to support W distinct wavelengths. We are also given a
traffic matrix A of nonnegative integers, where A,; denotes
the number of connections that have to be established from
source node s to destination node d. Each connection re-
quires bandwidth equal to one wavelength, and there may
be multiple connection requests for a given source—
destination pair (s,d). Each established connection is cat-
egorized as feasible or not based on its QoT. Finally, we let
W be the number of distinct wavelengths that have been
used to serve all connection requests. The aim of the IA-
RWA algorithm is to minimize the number of used wave-
lengths W, while selecting lightpaths that have acceptable
QoT performance for servicing connection requests.

B. Basic Formulations

The multiobjective genetic algorithm proposed in this pa-
per extends the genetic algorithm (GA) presented in [4]. In
particular, a gene corresponds to one of the k-shortest paths
of the P, set that serves a specific source—destination pair
(s,d). To this end, a set of 2 4),4irsAsq Tandomly generated
genes comprises a chromosome, which constitutes a poten-
tial solution to the routing problem of the ITA-RWA instance.

The objective of the genetic algorithm is to find those
genes that minimize the number of wavelengths needed for
coloring the resulting chromosome. Basic functions for doing
so starting from a randomly initiated population and per-
forming iterations are to rank and select chromosomes
based on some fitness function, perform mutation/crossovers
to avoid local optimums, and finally select the best-
performing ones. In what follows, we introduce novel fitness
functions that will define the objective vectors for the mul-
tiobjective genetic algorithm, basic genetic operands, and
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also present a wavelength assignment heuristic for assign-
ing wavelengths to the selected best-performing chromo-
somes.

Fitness functions: In order to reach a solution with a
minimum number of wavelengths used, it is important to
avoid the repeatability of the links in the paths (genes) that
comprise the chromosome. Thus, we denote by F; the cost of
a link /, and we assume that is equal to the number of paths
that cross link /. To this end, in our formulation, we assign
to each gene (s,d) of the chromosome the following cost:

csd=EFl, peP, and p e Ch.
lep

This cost directly relates the repeatability of a link in a chro-
mosome, which in turn determines the number of wave-
lengths to be used. We then define the following fitness func-
tion of the chromosome Ch:

F(Ch)=N*¢sd) where u(.) is the average of the cost values
that comprise Ch. It has been shown [9] that such a fitness
function performs better, when searching for a global opti-
mum solution, than exponential costs [4].

In order to define those fitness functions that will con-
sider the QoT during the multiobjective optimization pro-
cess, we have categorized the physical impairments accord-
ing to how they affect the QoT. First, amplified spontaneous
emission noise (ASE) depends on the number of erbium-
doped fiber amplifiers (EDFAs) of the path, which in turn
depends mainly on the length of the path. Polarization mode
dispersion (PMD) and chromatic dispersion also depend on
the length of the path. Other impairments, such as crosstalk
(XT) and filter concatenation (FC), have a significant effect
when two (or more) signals go through common cross-
connects (OXCs). Thus the number of common hops across
the routing path can be a relative objective function to opti-
mize. Driven by these observations, we assign to each chro-
mosome a vector F' of objective functions to optimize (mini-
mize) the number of wavelengths as well as the path length
and number of common hops for all lightpath requests, in
order to meet their QoT restrictions.

For a single gene that corresponds to a source—
destination pair (s,d), we assign a cost ¢y, that denotes the
utilization of links that comprise the path p e P,; and a
length cost dyy=d,, where d, is the length of the selected
path p € P,; and p € Ch. In addition, we also define F,, as the
number of paths in that chromosome that utilize node n
e V. Thus, we can assign to each gene (s,d) an additional
cost hyy that reflects the number of common hops between
the selected path for that (s,d) pair and all the other se-
lected paths that comprise the chromosome as follows:

heg= E F, pePy,; and p e Ch.
nep

To this end, based on the above formulations, we assign to a
chromosome Ch the following objective vector:

F(Ch) ={f1(Ch),f2(Ch),f3(Ch)},

where
i. fi(Ch)=N*dsd is the length cost,
ii. f5(Ch)=N*"sd) is the common hop cost, and
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iii. f3(Ch)=N#csd is the link utilization cost.
The parameters d,g, hyy, and c,; are as defined above, and
u(.) denotes the average of the corresponding cost values of
the genes inside the chromosome Ch.

Domination relation: Between two chromosomes with
two different objective vectors denoted as F(Ch;)
=(f1(Chy),f2(Chy),f3(Chy)) and  F(Chy)=(f1(Chs),f2(Chy),
f3(Chy)), F(Chy) dominates F(Chy) if (V[f;(Chy) <f;(Chy)) and
there exists at least an f; for which it holds f;(Ch,) <f;(Chy);
see Fonseca and Flemming [10].

In principle, the three functions of the vector do not con-
tribute equivalently and this depends on the actual network
under study. However, this must not be confused with ex-
cluding one function from the vector or adding weighting
factors. This is part of the optimization process and the re-
sult (the finally selected individuals) will clearly be a set of
nondominated individuals.

Genetic operands: A n-point crossover and a random
uniform mutation with a probability of 1/3 j)p4irsAsq are
used.

Wavelength assignment heuristic: In the proposed,
multiobjective genetic algorithm, we use a wavelength as-
signment heuristic algorithm, denoted here as WA(Ch), for
coloring the best-performing chromosome. This heuristic al-
gorithm is an extension of the Brelaz heuristic [11]. The
prime idea is to avoid crosstalk-generating sources [6], so as
to obtain solutions that have better quality of transmission
performance. To this end, we construct the common edge
graph and the common node graph of the genes that com-
prise the chromosome. By definition, the common node
graph has at least the same edges as the common edge
graph, since two paths that have a common link also have
two common nodes. Typically, a wavelength assignment al-
gorithm is performed on the common edge graph, but in or-
der to avoid interchannel crosstalk, the graph of common
nodes has to be used instead. The interchannel crosstalk is
the effect of power leakage between lightpaths crossing the
same switch and using the same wavelength due to nonideal
isolation of the inputs/outputs of the switching fabric. Note
that interchannel crosstalk has an imminent effect on QoT
because it cannot be filtered out since the interfering signal
is on the same wavelength as the one affected.

Moreover, the heuristic WA(Ch) algorithm uses the defi-
nition of the number of common hops cost parameter Ay
that was also used in one of the fitness (objective) functions.
The cost hy, is equal to the number of common hops between
the selected path for that (s,d) gene and all the other se-

lected paths that comprise the chromosome. If 4 is the av-
erage number of common hops over all the selected paths in
the chromosome, our heuristic algorithm iteratively colors
each one of the genes (s,d) as follows:

If hyy < h, then do the wavelength assignment based on the
common edge graph, else do the wavelength assignment
based on the node graph.

Thus, if the number of common hops of the path that cor-
responds to (s,d) is smaller than the average number of
common hops %, we perform a typical wavelength assign-
ment process on the common edge graph, so as to satisfy the
distinct wavelength assignment constraint. On the other
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hand, if the number of common hops of the examined path is

larger than 4, meaning that many other paths utilize the
same nodes and the number of crosstalk-generating sources
is high, we avoid using the same wavelength with the other
ligthpaths by performing the wavelength assignment pro-
cess on the common node graph. Note that since the com-
mon node graph includes the edges of the common edge
graph, the distinct wavelength assignment constraint is also
satisfied. In this way, the number of the -crosstalk-
generating sources is decreased, but, however, with a small
increase in the required number of wavelengths to color the
chromosome.

ITII. Q-LEARNING GENETIC ALGORITHM FOR SOLVING THE
IA-RWA PROBLEM

In this section, we present our second genetic algorithm
for solving the IA-RWA problem. This algorithm uses the Q
factor to evaluate the fitness of the chromosomes. Such a
Q-learning scheme can be considered as the ideal indicator
for population evolution towards a solution that consists of
only feasible lightpaths. Therefore, we use a single-objective
genetic algorithm that is connected to a VPI photonic simu-
lator [12] to estimate the Q factor. The pseudocode of the al-
gorithm is presented in Fig. 1. The optimization criterion is
the acceptable QoT for all the connection requests. If this
criterion cannot be satisfied, then the optimization criterion
is changed to a maximum number of elapsed epoch loops
(not shown in the pseudocode of Fig. 1), depending on the
amount of the population of the GA, unless progress in the
evolution is observed. In such a case the optimization crite-
rion is set back to the acceptable QoT for all the connection
requests.

Again, each gene represents one solution for a specific

kPaths[];
/* SDP: Source Destination Pair */
For each SDP in TraficMatrix{
kPaths.Add (Generate_k_ShortestPaths (SDP,k));
}

ValidPaths[];
For each Path in kPaths{
If EvalQ (WA (Path))is Accepted {
ValidPaths.Add (Path);
}
)

Population = GenerateInitialPop(ValidPaths) ;

/* Genetic Algorithm operations */
Epoch = 0;
While True {
Epoch = Epoch + 1;
Evaluate (Population) ;
If OptimizationCriteria(Population)= True {
Exit While;
}
Else{
Evolution (Population) ;
}
}

Solution = getFitterChoromosome (Population) ;

Fig. 1. Pseudocode of the @-learning GA algorithm.
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source—destination pair, whereas a chromosome represents
a solution to the routing subproblem of the RWA instance.
Note that we feed to the photonic simulator the candidate
path with the highest possible QoT, whereas a path that,
even if examined alone, does not have acceptable transmis-
sion quality is immediately dropped. This is because the
presence of other lightpaths would nevertheless deteriorate
its QoT further. In this way, we initialize the population to
consist of paths that yield feasible solutions.

Fitness function: Since a chromosome Ch corresponds to
a candidate solution of the routing subproblem of the RWA
instance and in order to use the physical layer evaluation
module, we need first to assign wavelengths. Let WA(Ch) be
a coloring solution to the routes of chromosome Ch. Let also
Eval(WA(Ch)) be the blocking performance of chromosome
Ch. Assuming that the WA(Ch) algorithm has reached a so-
lution with W wavelengths, we define the following fitness
function F for the chromosome Ch:

F(Ch) =B Eval(WA(Ch)) + W,

where B is a large integer constant number (e.g., B=1000).
In this way, the fitness of a chromosome depends on a
weighted combination of blocking and the number of used
wavelengths. Emphasis is given to the blocking performance
by selecting large values for the B coefficient. When blocking
is zero, and thus Eval(WA(Ch))=0, then the fitness of the
chromosome depends only on the number of wavelengths W
that the WA(.) outputs. To this end, we may assume that the
initial population consists of chromosomes with nonzero
physical layer blocking, and the algorithm tries to reach so-
lutions with zero blocking, without examining to a great ex-
tent the number of wavelengths that they use. Once such so-
lutions have been reached, the algorithm tries to minimize
the number of used wavelengths. Crossover and mutation
operators are also applied, as in the previous MOGA
scheme.

Hanibtirg

Fig. 2. (Color online) DTAG/T-Systems National Core Network.
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TABLE I
SIMULATION PARAMETERS

k-shortest paths 2

Initial population 50

Max population 75

Epochs (for single objective) 300
Q threshold 15
Po -4 dBm
EDFA NF 6 dB
Span 80 km

Channel Spacing 100 GHz

IV. PERFORMANCE EVALUATION

A. Blocking Performance of the MOGA Scheme

We have evaluated the performance of the proposed mul-
tiobjective and single-objective genetic algorithms consider-
ing the network topology of Deutsche Telecom shown in Fig.
2. The parameters of the simulations are summarized in
Table 1.

The span length in each link was set to 80 km. Each link
was assumed to consist exclusively of standard single-mode
fiber (SSMF) with dispersion parameter D=17 ps/nm/km
and attenuation parameter a=0.25dB/km. For the
dispersion-compensating fiber (DCF) we assumed param-
eters ¢=0.5dB/km and D=-80 ps/nm/km. The launch
power was 3 dBm/ch for every SMF span and —4 dBm/ch
for the DCF modules. The EDFAS’ noise figure was 6 dB,
and each EDFA exactly compensates for the losses of the
preceding fiber span. Regarding the dispersion management
scheme, a precompensation module was used to achieve bet-
ter transmission reach.

Figure 3 displays the blocking probabilities obtained in
our experiments as a function of connection requests
(source—destination pairs). In particular, Fig. 3 displays the
performance of the MOGA scheme when i) optimizing the
RWA problem against fiber impairments [see the MOGA1
curve optimizing only f; (path length) and f; (common
hops)l, i) optimizing fiber impairments as well as the

20%
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16 20 )
15
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—d— MOGA2 /
12% 9

Z
-
= 26
&‘! 2 A
g 20 A
= Tz
] "2
- —ll
[-+]
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182 220 240
Connection requests

Fig. 3. Blocking probability versus load (number of active source—
destination pairs). The tags next to the points indicate the number
of wavelengths required.
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number of wavelengths (see the MOGA2 curve that opti-
mizes f; and f5 and minimizes link utilization cost f3), and
iii) optimizing only link utilization cost f5 (single-objective
genetic algorithm; see the SOGA curve).

The latter actually corresponds to the pure RWA problem
without considering fiber impairments and has been added
for reference purposes. Tags in Fig. 3 denote the number of
wavelengths required to serve the connection requests.
From Fig. 3, it is clear that when considering fiber impair-
ments in the RWA, blocking decreases significantly. This is
because many solutions found by the SOGA are not consid-
ered by MOGA schemes as accepted since they do not satisfy
the QoT.

As Fig. 3 shows, blocking has been decreased from 18%
(for connection requests larger than 220) down to 5% (see
the MOGA1 and SOGA curves). This indicates that by
choosing the set of paths that exhibit short lengths and also
have a small number of common hops, one can increase the
quality of transmission of the selected lightpaths. However,
this enhancement in blocking has resulted in an increase in
the number of wavelengths required to serve all connections
with the requested QoT. This is because more wavelengths
are needed in order to avoid the degradations coming from
the physical impairments. However, when the link utiliza-
tion cost f3 is also inserted into the optimization process (see
the MOGAZ2 curve), the required number of wavelengths is
again decreased. Indeed, from Fig. 3, it can be seen that the
number of wavelengths used by MOGA2 is smaller than
that used by MOGA1, and for loads higher than 150 re-
quests the number of wavelengths used is the same as that
of the SOGA. The resulting trade-off, however, is that the
blocking performance of MOGAZ2 has slightly increased.
This is an inevitable trade-off, since the use of fewer wave-
lengths means that wavelengths are more densely placed,
and thus effects like XT, XPM, and FWM have a high effect
in signal QoT.

B. Convergence Performance of the MOGA Scheme

In evolutionary algorithms, like genetic algorithms, it is
necessary to find whether the algorithm converges and how
many epochs are needed. Here, we make use of the Pareto
converging genetic algorithm [13] to gain knowledge of the
propagation of the solution front through successive genera-
tions of the population. This can serve as a clue of conver-
gence speed and convergence performance and will further
explore the Pareto front.

Figure 4 displays the intrapopulation ranking histogram
for 40 connection requests. This histogram actually displays
the ratio of a given rank in the current population to that of
the combined and reranked population of the current and
the preceding epoch. Therefore, convergence is achieved
when, between two successive evolutions, individuals re-
main nondominated. In that case, the rank ratio is 0.5. To
this end, from Fig. 4, it can be seen that the MOGA scheme
converges at epoch 357 (mean execution time 5 ms/epoch).
Beyond 357 epochs, all subsequent generations consist of
only nondominated chromosomes, which is an indication
that optimization has converged.

Another histogram that has been used for exploring the
Pareto front and global convergence performance is the
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Fig. 4. (Color online) Intrapopulation ranking histogram display-
ing the ratio of a certain rank of genes between two successive
generations.

interpopulation ranking histogram. This combines and
reranks different final populations (potentially optimal
Pareto solutions) in order to demonstrate whether these in-
dividuals are close (or not) to the true Pareto front. It can be
the case that no evolutionary gain is achieved beyond a cer-
tain number of population evolutions. Figure 5 displays the
corresponding interrank histogram between two popula-
tions for different initial populations and for different num-
bers of epochs. It is clear that by epoch 357 the solution
found for an initial/maximum population size of 50/75 is not
close to the Pareto front since some individuals have been
degenerated and are now dominated by some others (ranks
5, 10, and 35; see blue bars in Fig. 5). Further, it was found
that there was no further gain from increasing the number
of epochs. This is due to the limited search space (small ini-

100%
m k=2 |init/max pop. =50/75 | generations to
0% | converge =357
m k=2 | init/max pop. = 100/150 | generations to
93 converege = 1200
E 60% I l-=i=2 [ init/max pop. = 300/500 | generations to
E converge=2800
= 40% —mk=2 | init./max pop.=500/1000 | generationsto—
= converge =5500
20% |
| |

1 5 10 15 20 25 30 35 40
rank

Fig. 5. (Color online) Interrank histogram of two merged optimal
solutions on several experiments with different parameters.
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tial population), and therefore, we have experimented with
larger populations and a number of epochs. As expected, (see
the red, green, and purple bars in Fig. 5), better results were
obtained by increasing the initial as well as the maximum
population limit since the algorithm searches in a wider set
of solutions. However, this had a significant cost in terms of
computational time since a significantly higher number of
iterations were needed to achieve convergence. From Fig. 5,
it can be seen that total convergence (rank ratio=1) has
been achieved in the case of having 500 individuals for the
initial population and 1000 as the maximum. In such a case,
the MOGA converges to the optimal Pareto front by the
5500th epoch. This is important information, since being on
(or even close) to the true Pareto front is a good indication of
the reliability of the proposed genetic algorithms for solving
the TA-RWA problem.

Other scenarios with more than 40 connections have also
been simulated. In all the cases, solutions have reached a
Pareto front (according to intraranking histograms) and in
most cases a true Pareto front (according to the interrank-
ing histogram).

Figure 6(a) and 6(b) displays a representative evolution of
the population in the case of 40 connection requests and an
initial/maximum population size of 500/1000. In particular,
Fig. 6(a) shows the evolution of the population from the Oth
to the 357th epoch, whereas Fig. 6(b) shows a detailed snap-
shot close to final convergence (from the 3000th to the
5500th epoch). In Fig. 6(b), the (potential) optimal Pareto
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Fig. 6. (Color online) (a) Population evolution towards convergence
against the number of hops and the path length for the MOGA1 al-
gorithm for the DTnet and 60 lightpath requests. (b) The converged
optimal Pareto front.
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front has been drawn. From Fig. 6, it is clear that the case of
having an initial/maximum population of 500/1000 does
converge to a solution that potentially is close to (or on) the
Pareto front. The blocking performance of this case is also
improved (see Fig. 7) and is discussed in the next subsec-
tion.

C. Performance Evaluation of the Q-Learning Genetic
Algorithm

In order to evaluate the single-objective, Q-learning ge-
netic algorithm, we carried out simulation experiments
again. The simulation parameters remained the same as in
Table I. Figure 7 displays and compares the performance of
the Q-learning with the multiobjective genetic algorithm of
different initial/maximum populations. In particular, Fig.
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Fig. 7. Blocking ratio, number of wavelengths, and execution time
versus connection requests for the MOGA and the Q-learning
schemes.
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7(a) shows the blocking performance, Fig. 7(b) shows the
number of wavelengths required, and Fig. 7(c) shows the ex-
ecution time.

From Fig. 7 it can be seen that the Q-learning scheme
outperforms the MOGA scheme at the expense, however, of
a significant increase in the execution time. In particular,
zero blocking has been achieved for a fully connected net-
work (one request for each source—destination pair), but the
execution time is almost 2 hours and continues to increase
with the increase of connection requests. This is because the
Q-learning genetic algorithm estimates the Q factor at each
iteration (epoch) in order to evaluate the fitness of the chro-
mosome and evolve the population.

The case of the MOGA scheme with an initial/maximum
population of 500/1000 is slightly better but again compu-
tationally heavy. The gain in blocking performance is 1%,
and execution time is ~100 min. In contrast, the perfor-
mance of the MOGA scheme with a 50/75 population size
(also drawn in Fig. 7 for reference) is by far lighter, but,
however, performs worse in terms of blocking. To this end,
we may argue that the population size actually determines
the MOGA performance. Hence, for a large number of indi-
viduals, the MOGA performance resembles that of the
Q-based scheme, which can be considered to be the most ac-
curate one due to the explicit Q-factor estimations. In con-
trast, having smaller populations result in less computa-
tional overhead but with a lower performance (higher
blocking) as well. In any case, we may argue that perfor-
mance and accuracy depends on the population size and can
be decided on an application basis. For example, for the dy-
namic IA-RWA problem, one may tune the population size to
meet traffic arrival requests and provision a certain block-
ing ratio.

V. CONCLUSION

In this paper, we presented two genetic algorithms for
solving the IA-RWA algorithms. The first one is a heuristic,
multiobjective genetic algorithm (MOGA) that accounts for
fiber impairments indirectly through the insertion in the op-
timization process of the path length and number of com-
mon hops. The second algorithm is a Q-learning genetic al-
gorithm that evaluates the Q factor at each iteration before
evolving the population. The two schemes were evaluated
and compared with each other. Results have shown that the
MOGA scheme is capable of adequately handling fiber im-
pairments, while its performance is determined by the popu-
lation size. To this end, for a large number of individuals,
performance is significantly improved and converges to-
wards that of the Q-learning scheme, at the cost, however, of
convergence speed. In contrast, by selecting small popula-
tion sizes, speed is improved but results in a higher blocking
ratio.
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